Stress oxidativo e alterações enzimáticas induzidas por nanotubos de carbono de paredes múltiplas (MWCNTs) funcionalizados com polietileno glicol no tecido hepático de camundongos

  • Silvia Pierre Irazusta Centro Estadual de Educação Tecnológica Paula Souza
  • Elaine Conceição de Oliveira Faculdade de Tecnologia de Sorocaba (FATEC-SO)
  • Helder José Ceragioli Faculdade de Engenharia Elética e da Computação (FEEC) - UNICAMP
  • Bruno Fernando Santos de Souza Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA) Universidade Federal de São Carlos campus Sorocaba (UFSCar-Sorocaba)
  • Monique Culturato Padilha Mendonça Laboratório de Ultraestrutura Celular e Ação de Venenos - IB UNICAMP
  • Edilene Siqueira Soares Laboratório de Ultraestrutura Celular e Ação de Venenos - IB UNICAMP
  • Romildo Azevedo Jr Universidade de Vila Velha - UVV
  • Maria Alice da Cruz-Höfling Laboratório de Ultraestrutura Celular e Ação de Venenos - IB UNICAMP
  • Zilda Maria Almeida Cruz Faculdade de Ciências Biológicas - UVV

Abstract

Avaliou-se a toxicidade de dois nanotubos de carbono de paredes múltiplas (MWCNT) funcionalizados com PEG, NT1-PEG e NTC-PEG, em fígado de camundongos, 72 h após administração e.v, a 100, 150 e 200 μg / animal. Procedeu-se análise histológica, morfometria da veia centrilobular, atividade antioxidante da SOD e da CAT. O tratamento com MWCNTs-PEG não apresentou diferença clínica comparado ao controle e nenhum processo inflamatório. NT1-PEG produziu alterações mais intensas em enzimas hepáticas que o NTC-PEG, além de causar aumento do diâmetro da veia centrilobular. A administração de MWCNTs induziu toxicidade leve e apenas com 200 μg, provavelmente pela produção de ROS

Author Biographies

Silvia Pierre Irazusta, Centro Estadual de Educação Tecnológica Paula Souza
Programa de Pós Graduação Mestrado Profissional em Sistemas Produtivos - Centro Estadual de Educação Tecnológica Paula Souza - CEETEPS
Elaine Conceição de Oliveira, Faculdade de Tecnologia de Sorocaba (FATEC-SO)
PhD em Imunologia - UNICAMP
Helder José Ceragioli, Faculdade de Engenharia Elética e da Computação (FEEC) - UNICAMP
PhD em Engenharia Elétrica - UNICAMP
Bruno Fernando Santos de Souza, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA) Universidade Federal de São Carlos campus Sorocaba (UFSCar-Sorocaba)
Biólogo. Mestrando em Biotecnologia e Monitoramento Ambiental
Monique Culturato Padilha Mendonça, Laboratório de Ultraestrutura Celular e Ação de Venenos - IB UNICAMP
PhD em Farmacologia - UNICAMP
Edilene Siqueira Soares, Laboratório de Ultraestrutura Celular e Ação de Venenos - IB UNICAMP
Mestre em Ciências Biológicas - UNICAMP
Romildo Azevedo Jr, Universidade de Vila Velha - UVV
PhD Ciências Biológicas - UVV
Maria Alice da Cruz-Höfling, Laboratório de Ultraestrutura Celular e Ação de Venenos - IB UNICAMP
PhD em Ciências Biológicas e professora colaboradora convidada IB UNICAMP
Zilda Maria Almeida Cruz, Faculdade de Ciências Biológicas - UVV
PhD Ciências Biológicas

References

AHN YN, GUPTA A, CHAUHAN A, KOPELEVICH DI. Molecular transport through surfactant-covered oil-water interfaces: role of physical properties of solutes and surfactants in creating energy barriers for transport.Langmuir. 15;27(6):2420-36, 2011.
AHAMED, M., AKHTAR, M.J., ALHADLAQ, H.A., ALROKAYAN, S.A. Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine (Lond.), 10: 2365-2377, 2015
ALARIFI, S., ALI, D. Mechanisms of Multi-walled Carbon Nanotubes-Induced Oxidative Stress and Genotoxicity in Mouse Fibroblast Cells. Int. J. Toxicol. 34: 258-65, 2015.
ANDRADE, L.R., BRITO, A.S., MELERO, A.M., ZANIN, H., CERAGIOLI, H.J., BARANAUSKAS, V., CUNHA, K.S., IRAZUSTA, S.P. Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test. Ecotoxicol. Environ. Saf., 99, 92-7, 2014.
ASAGBA, S.O., ERIYAMREMU, G.E., IGBERAESE, M.E. Bioaccumulation of cadmium and its biochemical effect on select tissues of catfish (Clariasgariepinus). Fish Physiol. Biochem., 34: 61-69, 2008.
ATLI, G., CANLI, M. Enzymatic response to metal exposures in a freshwater fish Orcochronis niloticus. Biochem. Phisiol., C 145: 282-287, 2007.
BARBOSA-SOUZA, V., CONTIN, D.K., BONVENTI FILHO, W., de ARAÚJO, A.L., IRAZUSTA, S.P., da CRUZ-HÖFLING, M.A. Osteopontin, a chemotactic protein with cytokine-like properties, is up-regulated in muscle injury caused by Bothrops lanceolatus (fer-de-lance) snake venom. Toxicon., 58: 398-409, 2011.
BERGAMASCHI, E., BUSSOLATI, O., MAGRINI, A., BOTTINI, M., MIGLIORE, L., BELLUCCI, S., IAVICOLI, I., BERGAMASCHI, A. Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment. Int. J. Immunopathol. Pharmacol., 19, 3-10, 2008.
BEUTLER, E. Red cell metabolism: manual of biochemical methods. In: Grune and Stratton Inc., 3 Ed., 1975, 187 p.
BOTTINI, M., ROSATO, N., BOTTINI, N., HUANG, X., TENG, X., CHEN, D., TANG, F., HE, J. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules, 12: 3381–3393, 2011.
DAL BOSCO, L., WEBER, G.E., PARFITT, G.M., CORDEIRO, A.P., SAHOO, S.K., FANTINI, C., KLOSTERHOFF, M.C., ROMANO, L.A., FURTADO, C.A., SANTOS, A.P., MONSERRAT, J.M., BARROS, D.M. Biopersistence of PEGylated Carbon Nanotubes Promotes a Delayed Antioxidant Response after Infusion into the Rat Hippocampus. PLoS One. 10(6):e0129156, 2015.
DARNE, C., TERZETTI, F., COULAIS, C., FONTANA, C., BINET, S., GATÉ, L., GUICHARD, Y. Cytotoxicity and genotoxicity of panel of single- and multiwalled carbon nanotubes: in vitro effects on normal Syrian hamster embryo and immortalized v79 hamster lung cells. J. Toxicol. 2014: 1-15, 2014.
DIESEN, D.L., KUO, P.C. Nitric Oxide and Redox Regulation in the Liver: Part I General Considerations and Redox biology in Hepatitis. J. Surg. Res. 162: 95–109, 2010.
DONALDSON, K., POLAND, C.A. Inhaled nanoparticles and lung cancer – what we can learn from conventional particle toxicology. Swiss Med. Wkly., 142: 1-9, 2012.
ELHISSI, A.M.A., AHMED, W., U.; HASSAN, I., DHANAK, V.R., D'EMANUELE, A. Carbon nanotubes in cancer therapy and drug delivery. Journal of Drug Delivery 2012: 10p, 2012.
FERREIRA-CRAVO, M., VENTURA-LIMA, J., SANDRINI, J.Z., AMADO, L.L., GERACITANO, L.A., REBELO, M., BIANCHINI, A., MONSERRAT, J.M. Antioxydant responses in different body regions of the polychaeta Laconereis acuta (Nereididae) exposed to copper. Ecotoxicol. Environ. Saf., 72: 388-393, 2009.
FILIPOVIĆ, D., MANDIĆ, L.M., KANAZIR, D., PAJOVIĆ, S. B. Acute and/or chronic stress models modulate CuZnSOD and MnSOD protein expression in rat liver. Mol. Cell. Biochem., 338: 167-74, 2010.
GAILLET, S., ROUANET, J.M. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms--a review. Food Chem. Toxicol., 77: 58-63, 2015.
GERET, F., SCRAFIN, A., BEBIANO, M.J. Antioxydant enzymic activiyies, metallothioneis and lipid peroxidation as biomarkers in Ruditapes decussates. Ecotoxicology, 12: 417-426, 2003.
GRECCO, A.C., PAULA, R.F., MIZUTANI, E, SARTORELLI, J.C., MILANI, A.M., LONGHINI, A.L., OLIVEIRA, E.C., PRADELLA, F., SILVA, V.D., MORAES, A.S., PETERLEVITZ, A.C., FARIAS, A.S., CERAGIOLI, H.J., SANTOS, L.M., BARANAUSKAS, V. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes. Nanotechnology, 22(26):265103, 2011.
HILDER, T.A., HILL, J.M. Modeling the loading and unloading of drugs into nanotubes. Small. 5(3):300-8, 2009.
HIRRINGER, J., RESCH, A., GUTERRER, J.M., DRINGEN, R. Oligodendrodial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurons, astroglial and microglial cells. J. Neurochem., 82: 635-644, 2002.
HUANG, X., TENG, X., CHEN, D., TANG, F., HE, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 31: 438–48, 2010.
JOKERST, J.V., LOBOVKINA, T., ZARE, R.N., GAMBHIR, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond). 6(4):715-28, 2011.
KAUR, S., KAUR, A. Variability in antioxidant / detoxification enzymes of Labeorohita exposed to an azo dye, acid black (AB). Comp. Biochem. and Physiol., Part C: 108-116, 2015.
KERMANIZADEH, A., GAISER, B.K., HUTCHISON, G.R., STONE, V. An in vitro liver model - assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Particle and Fibre Toxicology, 9: 28-41, 2012.
KMIEĆ, Z. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell. Biol. 161: 1-151, 2001.
LIU, Z., TABAKMAN, S., WELSHER, K., DAI, H.J. Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Deliver. Nano. Res., 2: 85–120,2009 .
LIVINGSTONE, D.R., 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull., 42: 656-666, 2001.
LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.L., RANDALL, R.J. Protein measurement with the Folin phenol reagent. J Biol Chem.,193, 265-75, 1951.
MCCORD, J.M., FRIDOVICH, I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J. Biol. Chem., 25: 6056-63, 1969.
MENDONÇA M.C.; SOARES, E.S.; DE JESUS, M.B.; CERAGIOLI, H.J.; FERREIRA, M.S.; CATHARINO, R.R.; DA CRUZ-HÖFLING, M.A. Reduced graphene oxide induces transient blood-brain barrier opening: an in vivo study. J Nanobiotechnology.13:78-81, 2015.
MERCER, R.R., HUBBS, A.F., SCABILLONI, J.F., WANG, L., BATTELLI, L.A., SCHWEGLER-BERRY, D., CASTRANOVA, V., PORTER, W.D.nbDistribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxico., 7:28, 2010.
MÜLLER, L., RIEDIKER, M., WICK, P., MOHR, M., GEHR, P., ROTHEN-RUTISHAUSER, B. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and advanced three-dimensional model of human epithelial airways. J. R. Soc., 7, S27-S40, 2010.
NEL, A., XIA, T., MADLER, L., LI, N. Toxic potential of materials at the nanolevel. Science, 311: 622–7, 2006.
OH, S.H., LEE, M.H. Effect of p-dimethylaminobezene and 2(3)-tert-4-hidroxyanisole on lipid peroxidation, gluthatione-S-transferase, peroxidase and reductase in rat liver. Yonsei Med., 22, 95-100, 1981.
ORBEA, A., CAJARAVILLE, M.P. Peroxisome proliferation and antioxidant enzymes in transplanted mussels of four basque estuaries with diferent levels polycyclic aromatic hydrocarbon and polychlorinated biphenyl pollution. Environ. Toxicol. Chem., 25: 1616-1626, 2006.
PATLOLLA, A.K., BERRY, A., TCHOUNWOU, P.B. Study of hepatotoxicity and oxidative stress in male Swiss–Webster mice exposed to functionalized multi-walled carbon nanotubes. Mol. Cell. Biochem. 358: 189–199, 2011.
POLAND, C. A., DUFFIN, R., KINLOCH, I., MAYNARD, A., WALLACE, W. A., SEATON, A., STONE, V., BROWN, S., MACNEE, W., DONALDSON, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol., 3: 423-428, 2008.
SADAUSKAS, E., JACOBSON, N.R., DANSCHER, G., SOLTENBERG, M., LARSEN, A., KREYLING, W., WALLIN, H. Bio-disruption of gold nanoparticles in mouse lung following intratracheal instillation. Chemistry Central Journal, 3: 16–23, 2009.
SEMMLER-BEHNKE, M., WOLFGANG, K.G., LIPKA, J., FERTSCH, S., WENK, A., TAKENEKA, S., SCHMID, G., BRANDAU, W. Bio-distribution of 1.4 and 18 nm gold particles in rats. Small., 12: 2108–2111, 2008.
SIMON, A.; MALETZ, S.X.; HOLLERT, H.; SCHÄFFER, A.;MAES, H.M.; Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation. Nanoscale Res Lett. 9(1):396- 98, 2014.
TAN, J.M., ARULSELVAN, P., FAKURAZI, S., ITHNIN, H., HUSSEIN, M.Z. A Review on Characterizations and Biocompatibility of Functionalized Carbon Nanotubes in Drug Delivery Design. Journal of Nanomaterials, 8: 1-20, 2014.
TONG, X AND YIN, L. Circadian rhythms in liver physiology and liver diseases. Comparative Physiology 3: 917-940, 2013.
WINSTON, G.W., DI GIULIO, R.T. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19: 137-161, 1991.
WU, S.; DUAN, B.; LU, A.; WANG, Y.; YE, Q.; ZHANG, L. Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. J. Carbohydr Polym. 15: 174:830-840, 2017
XU, J., FUTAKUCHI, M., SHIMIZU, H., ALEXANDER, D.B., YANAGIHARA, K., FUKAMACHI, K., SUZUI, M., KANNO, J., HIROSE, A., OGATA, A., SAKAMOTO, Y., NAKAE, D., OMORI, T., TSUDA, H. Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci., 103: 2045–2050, 2012.
YANG, S.T., LUO, J., ZHOU, Q., WANG, H. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics, 2: 271–82, 2012.
Published
2018-02-26
How to Cite
Irazusta, S. P., Oliveira, E. C. de, Ceragioli, H. J., de Souza, B. F. S., Mendonça, M. C. P., Soares, E. S., Azevedo Jr, R., da Cruz-Höfling, M. A., & Cruz, Z. M. A. (2018). Stress oxidativo e alterações enzimáticas induzidas por nanotubos de carbono de paredes múltiplas (MWCNTs) funcionalizados com polietileno glicol no tecido hepático de camundongos, 11(1). https://doi.org/10.22280/revintervol11ed1.366